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Abstract:  
Deleterious ions in the environment such as sulfates may degrade the concrete structures. The interaction of 

cement hydration products with these destructive agents contributes to severe durability threat of the concrete 

structures. External sulfate attack is well-known for causing permanent changes in concrete. Microbially 

induced calcium carbonate (MICP) precipitation has been considered as a unique technique in enhancing the 

durability properties of concrete. This review paper discusses the possibility of bio-deposition from MICP 

process as a barrier in microbial treated concrete against the penetration of sulfate ions in a sulfate- rich 

environment. The effect associated with chemical and physical sulfate attack is discussed in line with the 

mechanical properties of cement such as compressive strength whereas microscopic evaluation is based on 

scanning electron microscopy studies. The shortcomings associated with sulfate ions in cement-based materials 

and the positive effects of incorporating bacillus species bacteria in sulfate rich areas is discussed. This review 

found that, MICP can significantly reduce the ingress of sulfate ions in cement-based materials, which results 

in improving the mechanical properties of the cement mortar/concrete. 
 DOI: 10.33945/SAMI/JCR.2019.4.5 
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1. Introduction 

The benefits associated with concrete such as 

accessibility of raw materials, minimal preparation 

cost, high compressive strength and durability has 

made it to be the most affordable and widely used 

construction material. Large volumes of concrete are 

used annually across the world for construction of 

buildings, roads, sewer systems and bridges. While 

concrete is the most preferred building material, it is 

susceptible to the aggressive materials such as sulfates, 

carbon dioxide, and chlorides. The ingress of these 

agents into the concrete matrix causes serious 

durability threat on the concrete structures [1, 2]. 

Most of the concrete structures are suffering from 

durability threats due to the presence of micro and 

macro cracks that may develop during the service life 

of the concrete structures. These cracks form suitable 

pathways for the ingress of harmful substances into the 

concrete matrix [3, 4]. The presence of aggressive 

agents in the concrete matrix triggers early failure of 
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the cement based structures. Amongst the discussed 

deleterious ions are sulfates. Sulfates are known to 

cause deleterious effects on cement based structures 

and several methods have been adopted by many 

researchers to reduce the sulfate attack on concrete. 

Concrete structures erected in sulfate rich-environment 

suffer great extent of damage as a result of sulfate 

attack. Presence of sulfate ions in concrete structures 

trigger an increase in porosity, expansion, and 

cracking. These affects the mechanical properties and 

hence resulting to reduced durability of the cement 

based materials [5,6]. The placed concrete intermingles 

with the sulfates from the ground water resulting to 

dilapidation of the inherent concrete properties. This 

phenomenon is referred to external sulfate attack [7]. 

External sulfate attack caused by the ingress of sulfate 

ions from the environment into the concrete has been 

discussed in several studies [8-10]. Georges et al., 2016 

[11] reported that concrete structures placed in sulfate 

rich areas suffers from sulfate attack. This is due to the 

ingress of sulfate ions into the cement matrix [12, 13]. 

The mechanism of degradation of cement based 

materials due to the sulfate attack is now comparatively 

well-known [14, 15]. Sulfate ions upon ingress into the 

concrete matrix can modify the chemical equilibrium 

between the solid phase and the interstitial phase in the 

cementitious matrix [16, 17]. The chemical reaction 

between the hydration products of the cement and the 

sulfates from the environment occurs as a result of 

diffusion of these ions to the concrete surface [19, 20]. 

Calcium hydroxide (CH) may react with sulfates 

forming gypsum. The formed gypsum further reacts 

with tricalcium aluminate from clinker to form 

ettringite. Ettringitte is an expansive needle-like 

crystalline substance and the expansion of concrete/ 

mortar is associated with its formation [21, 22]. The 

crystallized ettringite causes expansive forces within 

the concrete matrix, leading to cracking and spalling 

[23]. The equation below shows the formation of 

ettringite. 

3CS̅H2 + C3A + 26H → C6AS̅3H32     (1) 

Among the most consistent theories derived from most 

of the experiments with respect to sulfate attack is the 

crystal growth theory. This theory defines the 

crystallization pressure produced by supersaturation 

and confinement. The driving force for the 

crystallization according to crystal growth theory is the 

super saturation of the pore solution with respect to 

ettringite [24 - 26]. Microstructural tests have shown 

that the reaction of sulfates and monosulfates in 

pockets does not cause any expansion. However, when 

the pockets are depleted the finely intermixed 

monosulfates in the C-S-H reacts to form expansive 

ettringite [27]. Experimental results have shown that 

sulfate attack leads to not only expansion of cement 

based materials but also causes softening and 

decohesion [28, 29]. 

Supplementary cementitious materials (SCMs) such as 

fly ash, natural Pozzolana and slag have been 

incorporated in cement to mitigate the sulfate attack [30 

- 34]. These materials however, do not effectively 

protect the physical sulfate attack [28, 35 and 23]. 

Other materials such as epoxy based fillers or silane- 

based water repellant have been used widely to repair 

concrete cracks associated with physical sulfate attack. 

Their short term efficiency and negative environmental 

impact has been an issue for the repair industry [20]. 

These polymeric materials are expensive and can only 

be applied from outside where the cracks are visible.  

The precipitation of calcium carbonate by calcifying 

bacteria through a process referred to bio deposition 

has been suggested as a remarkable method for 

improving the durability of cement based materials. 

This method facilitates self-healing of concrete cracks 

reducing the risks of harmful materials from ingression 

into the concrete [36]. Chigozirim et al., [37] defined 

microbially induced calcium carbonate precipitation 

(MICP) as the ability of microbes to produce calcium 

carbonate extracellularly through a metabolic activity. 

Several researchers have shown the potential of using 

calcifying bacteria via biominerization to improve the 

durability of cement-based materials [38-40]. 

2. Biomineralisation 

Mineralisation used in civil engineering often refers to 

production of minerals, primarily carbonate products. 

Chigozirim et al. [37] defined biomineralisation as the 

process by which living organisms produce minerals 

through metabolic activities from their interaction with 

the environment. In biomineralisation, living 

organisms produces inorganic mineral phases with a 

biopolymer [41]. The involved microorganisms secrete 

one or more metabolic products that react with ions or 

compounds in the environment resulting in the 

subsequent deposition of mineral particles as metabolic 

products [42]. These metabolic activities may result in 

selective cementation by producing moderately 

insoluble organic and inorganic compounds.  

The formed compounds which can serve as 

cementitious materials are referred to biocement. 

Biocement comprising of an alkalophilic microbe, 

substrate solution and calcium ion solution has 

attracted much attention as a ‘’green’’material. It relies 

on microbially induced calcium carbonate precipitation 

(MICP) [43].  Many researchers have shown that MICP 

can improve the concrete strength and durability of 

cement-based materials [44-46]. The process involves 

enzymatic reactions. Urease produced by the bacteria 

hydrolyses urea, and calcium is utilized as energy 

source to form biocement [47].  
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In MICP process, microorganisms play a key role in 

maintaining an alkaline environment via their 

innumerable physiological activities. These activities 

ensure an increase in pH and dissolved inorganic 

carbon [48]. Rong et al., [49] and Ariyanti et al., [48] 

reported that biocementation can be effective in 

binding sand grains for making bio sands of adequate 

compressive strength as shown in Figure 1. Ghosh et 

al., [50] reported compressive strength increasing up to 

25% when pure mortar was mixed with shewanella 

species. The increase in compressive strength was 

attributed to biocementation. 

 
Figure 1. Cementation mechanism of biocement. (a) Loose sand; (b) bacteria absorbed in the surface of loose sand; (c) cementation substance absorbed in the surface 
of loose sand; (d) loose sand to whole sand cemented by bio-cement.

Ureolytic activity involves consumption of urea to 

form ammonia and carbamate. The formed carbamate 

spontaneously hydrolyses to form an additional 

ammonia and carbonic acid [51]. The formed products 

trigger formation of bicarbonate, increasing the pH that 

ultimately shifts the bicarbonate equilibrium resulting 

to formation of carbonate ions. As a result of high pH 

in the cell, there is need for a high extracellular calcium 

ion concentration and a low extracellular proton 

concentration to facilitate the secretion of carbonate 

ions. High pH favors the formation of carbonates from 

bicarbonates [52, 47]). Equations 2-8 reveals the 

mechanism of ureolytic activity. 

CO(NH2)2 + H2O → NH2COOH +NH3  (2) 

NH2COOH +H2O → NH3 + H2CO3  (3) 

H2CO3 ↔ HCO3
- +H+    (4) 

2NH3 +2H2O ↔ 2NH4
+ + 2OH-   (5) 

HCO3
- + H+ +2NH4

+ +2OH- ↔ CO3
2- +2NH4

+ +2H2O

                  (6) 

Ca2+ + Cell → Cell – Ca2+   (7) 

Cell – Ca2+ + CO3
2- → Cell – CaCO3  (8) 

Carbonic anhydrase enzyme assists the interconversion 

of carbon dioxide and bicarbonate and promotes the 

precipitation of calcium carbonate [53].Carbonic 

anhydrase plays a vital role in concentration of CO2. 

Equations 9-10 show how the carbonic anhydrase in 

presence of bicarbonate as the source of the dissolved 

inorganic carbon catalyses bicarbonate into carbon 

dioxide [54]. 

HCO3
- →H2O + CO2    (9) 

Ca2+ + 2HCO3
-→ CaCO3 + H+ + HCO3

-  (10) 

2.1 Biodeposition/ Bioremediation 

MICP deposits carbonate crystals inside the surface 

pores of cement-based materials preventing the ingress 

of external deleterious materials into the concrete 

matrix [55]. Several researchers have explored MICP 

for protection and consolidation of ornamental 

limestone [56]. Biodeposition treatment has been 

applied in five different types of limestone to 

investigate the effect of pore structure on the protective 

performance of a MICP based surface treatment [57]. 

It was also found that biodeposition reduced water 

absorption and gas permeation on cementitious 

materials. 

D. Muynck reported that decrease in capillary suction 

and decrease in gas permeability was a result of 

deposition of calcite layer on surface of the cement 

[45]. Biodeposition results in plugging of pores and 

formation of biofilms on the surface of cement based 

materials. MICP technique has been used to remove 

sulphate and clean crusts from marble monuments [58]. 

Desulfovibrio desulfuricans an anaerobic bacterium 

converted calcium sulphate into calcium carbonate as 

product of MICP as shown in Equation 11 [59]. 

6CaSO4 + 4H2O + 6 CO2 → 6CaCO3 + 4H2S +2S+11O2

                    (11) 

Bioremediation in concrete materials has been carried 

out in two ways. Firstly the bacteria cells with proper 

nutrition, urea and calcium source are assimilated into 

the concrete matrix during casting. In this scenario, the 

microbes trigger the formation of biominerals when the 

cracks occur. The biominerals forms calcites that seal 

the cracks [60]. The second method involves 
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application of the bacteria cell on the surface of the 

concrete cracks. From the previous studies carried out 

by [44] SEM scans showed calcite precipitation in 

healing areas of cement mortar surface where cracks of 

width of 3mm and depth of 18.8mm in mortars were 

healed by Sporosarcina pasteurii. 

Ramachandran et al., [44] initiated the MICP based 

bioremediation of concrete materials. Sand mixed with 

Sporosarcina pasteurii cell were applied in cracks in 

mortars to improve the compressive strength by 61%. 

In a separate experiment, Ramachandran et al., [44] 

employed polyurethane –encapsulated bacterial cells in 

order to protect the bacteria cells from the high pH of 

cement [61]. There was a significant increase in 

compressive strength of the remediated concrete of 

12% at 7 days and only 3% increase at 28 days. The 

sealing of cracks by calcite precipitated by B. 

sphaericus resulted in reduction of water permeability 

and crack bridging was demonstrated by an increase in 

ultra-sonic pulse velocity [62].  Table 1 summarizes the 

bioremediation efficiencies in crack healing of 

cementitious materials as reported by several authors. 

Table 1. Bioremediation efficiency of crack healing on cementitious materials based on MICP technology 

Specimen and Microbe 
Specimen Dimension 

(mm) 
Crack Size (mm) 

Bioremediation 

efficiency 
Author 

Concrete prisms  
160 × 160 × 70 

d = 20 Decrease in water 

permeability, crack 

bridging 

De Belie et al., 2009 

[63] B. sphaericus w = 0.3 

Reinforced mortar 
40 × 40 × 160 

Multiple cracks, w = 

0.05-1.00 mm 

Self-healing, oxygen 

diffusion barrier 

Wiktor et al., 

2011[64] B. alkalinitrilicus 

Cement mortar 
50.8 × 50.8 × 50.8 

d = 25.4 Improvement in 

compressive strength 

(61%) 

Ramachandran et al., 

2001[44] S. pasteurii w= 3.175 

Cement mortar 

50.8 × 50.8 × 50.8 

d = 25.4 Improvement in 

compressive strength 

(12%) 

Bang SS et al., 

2001[61] S. pasteurii 

(encapsulated) 
w 3.18  

Cement mortar 

40 × 40 × 40 

- 
Protect crack against 

water ingress 

Jonkers HM et al., 

2008[65] B. pseudofirmus B. 

cohnii 
- 

Concrete prisms  

160 × 160 × 70 

d = 20 Decrease in water 

permeability, visual crack 

sealing, high pH 

protection of bacteria 

Van Tittelboom et al., 

2010[62] 
B. sphaericus w = 0.3 

Reinforced prism 
40 × 40 × 360 

d = 20 Higher strength regain and 

more pronounced decrease 

of water permeability 

Wang JY et al., 

2012[60] B. sphaericus w = 0.35-0.50 

Reinforced prism 
30 × 30 × 360 

Multiple cracks, w = 

0.20-0.22 

Self-healing (48-80%), 

lower water permeability 

Wang JY et al., 

2014[66] B. sphaericus 

 

3. Effects of Sulphate Attack on Cement Based 

Materials 

In this segment, we summarize the results obtained so 

far on the effects associated with sulphate attack on the 

cement -based materials when exposed to sulphate 

solutions. 

3.1 Chemical Sulphate Attack 

3.1.1. Compressive Strength 

According to Joshi et al. findings [67], the performance 

of cement both mortar prisms and concrete cubes were 

subjected to sulphate environment using the outlined 

exposure regimes (as shown in Table 2). 

Concentrations of the nutrient broth medium, urea and 

calcium were 1.3%w/v, 2% w/v and 25mM w/v, 

respectively. 

It was found that, the compressive strength of test 

cements treated and cured with bacteria solutions 

indicated as BAT and BST increased as compared to 

the blank. The treated test cements exhibited 35% 

increase in compressive strength while the test cement 

cured through spraying with bacteria solution gave an 

increase in compressive strength up to 16% as 

compared to the control test cements. The authors 

attributed the compressive strength increase to 

biocementation. Mittermayr et al., [68] showed that the 

increase in compressive strength could be as a result of 

densification of cementitious matrix at microstructural 

level. Najjar et al., [69] in their work reported that 

ingress of sulfate ions into the concrete matrix triggers 

the formation of expansive products that fills the pores 

and voids leading to the densification of microstructure  
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Table 2. Exposure of test cements (concrete cubes and mortar prisms) in both blank and bacterial solutions 

Specimens Material Used Mechanism of curing 

 

 

 

Concrete Cubes 

 

Control Sample 

Cement:Sand:Course Aggregate, 

Water/Cement r =0.5 

 

Water curing for 28 days 

Bacterial admixed 

treated (BAT) 

Cement:Sand:Course Aggregate 

Bacterial Culture/Cement  =0.5 

Submersion in NB media, urea CaCl2 and bacterial 

culture for 28 days 

Bacterial spray 

treated (BST) 

Cement:Sand:Course aggregate, 

Water/ cement =0.5 

Bacterial spray on specimens twice a day till 28 days 

 

 

Mortar Prisms 

Control Sample Cement:Sand, Water/cement 

=0.47 

 

Water curing for 28days 

Bacterial Admixed 

Mortar (BAM) 

Cement: Sand 

Bacterial 

culture/ cement=0.47 

Submersion in NB media, Urea CaCl2 and bacterial 

culture for 28days 

Bacterial Spray 

mortar (BSM) 

Cement:Sand  Water/Cement 

=0.47 

Bacterial Spray on specimens twice a day till 28 

days 

 

 

during the initial exposure of concrete to sulfate rich 

areas. 

Summit et al., [67] observed severe strength loss in 

control test cement after 12 months of exposure to 

sulphate solutions. The compressive strength of the 

control test cement (blank) decreased by 30% as 

compared to the initial strength before exposure while 

the bacteria treated test cement showed no significant 

drop in strength. This decrease in strength was 

attributed to increased penetration of sulfate salts 

initiating higher buildup of expansive products in the 

pores of the control test cements. Formation of 

ettringite crystals reduces the quantity of CH and C3A 

of the cementitious matrix and the salt crystallization 

pressure within the pores of the cement mortar [70, 71]. 

Several other authors have also shown the increase in 

compressive strength as a result of incorporating 

bacteria [72-75].  

While the studies are based on simulated laboratory 

experiments, it would be necessary if beneficial 

bacteria were incorporated into a sulfate rich 

environment where biodegrading bacteria are present 

such as sewage set up. This would help establish 

whether it would be suitable to introduce the remedial 

bacteria during the mixing as mix water or use the 

remedial bacteria solution in curing the concrete. 

3.1.2 Visual Appearance/ Observations 

The studies conducted by [67] clearly showed distinct 

difference in control specimens versus bacterial treated 

specimens when subjected into sulfate solutions. 

According to the authors there was clear sign of 

degradation of the control specimen after 12 months of 

exposure to sulfate solution. The bacterial treated 

specimen did not show any sign of degradation. Figures 

2, 3 and 4 show the appearance of control specimens, 

BAT and BST respectively when exposed to sulfate 

solutions. These results are according to Sumit et al., 

findings [67]. 

 

3.1.3 Change in Mass 

Ingress of sulfate ions into the cement mortar/ concrete 

causes increase in mass by about 0.8% [67]. Maes et 

al., [76] reported that the increase in mass of concrete / 

mortar exposed to sulphates could be attributed to the 

formation of expansive products. The authors argued 

that the sulphate ions reacts with the hydration products 

leading to compacted microstructure. According to 

[77] a high porous concrete gains more mass due to 

high rate of sulphate ions ingress. Najjar et al., [78] 

reported that higher pore volume contributes to the 

transportation of sulfate ions hence filling of concrete 

pores with expansive products.
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Each concrete cube measured 100 mm x 100 mm x 100 mm.

 

Figure 2. Visual exposure of control specimen (100x100x100mm) after sulfate exposure at the age of (A) 30 days, (B) 90 days, (C) 180 days, (D) 270 days and (E) 
365days. 

Each concrete cube is 100 mm x 100 mm x 100 mm

 
Figure 3. Visual Appearance of BAT specimen (100x100x100mm) after sulfate exposure at the age of (A) 30 days, (B) 90 days, (C) 180 days, (D) 270 days and (E) 365 
days 

Each concrete cube is 100 mm x 100 mm x 100 mm

 
Figure 4. Visual Appearance of BST specimen (100x100x100mm) after sulfate exposure at the age of (A) 30 days, (B) 90 days, (C) 180 days, (D) 270 days and (E) 365 
days
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3.2 Physical Sulfate Attack  

Cement based materials are prone to physical sulfate 

attack. This attack to the concrete/ cement mortar is 

characterized by formation of salt efflorescence on the 

surface of the concrete/ mortar. Nehdi et al., [77] 

reported that deterioration mechanism in physical 

sulfate attack is due to stress development from the salt 

crystallization pressure in the pore structure. Sulfate 

ions penetrates into the concrete pores through 

capillary suction [79]. Sulfate salts crystallizes on the 

concrete surface since at the upper dry surface, the rate 

of evaporation exceeds the rate of capillary rise. 

Scherer G.W. reported that salt solution uptake into the 

pores by capillary pressure is dependent on the pore 

distribution of porous body as well as its wetting 

behavior [80].  

According to Sumit et al., [67] thick deposition of salt 

efflorescence was observed on the upper surface of the 

control specimens. The authors further noted that there 

was a crack developed on the control specimens after 

90 days of exposure. The bacterial treated specimens 

showed excellent resistant to sulfate attack. There was 

no visible damage such as surface scaling or crack 

formation observed in the bacteria treated samples 

(BSM and BAM) as indicated in Table 2. The authors 

attributed the resistance to calcite precipitation.  The 

figures below show the influence of physical sulfate 

attack as reported by Joshi et al. (Figures 5, 6 and 7) 

[67]. 

Each mortar prism is 285 mm x 25 mm x 25 mm

 
Figure 5. Typical salt efflorescence development in control prism after exposure at the age of (a) 30 days, (b) 90 days (c) 180 days (d) 270 days (e) 365 days.

Each mortar prism measured 285 mm x 25 mm x 25 mm

 
Figure 6. BSM prism after exposure sulfate at the age of (a) 30days (b) 90 days (c) 180 days (d) 270 days (e) 365 days
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Each mortar prism is 285 mm x 25 mm x 25 mm

 
Figure 7. BAM Prism after sulfate exposure at the age of (a) 30 days (b) 90days (c)180 days, (e) 365days

3.3 Microscopic Evaluation 

Summit et al. [67] reported increased ettringite 

formation at the age of 90 days in control specimens 

cured in sodium sulfate solution, whereas the bacterial 

cured specimens exhibited increased calcium carbonate 

formations. The growth of calcite might be attributed 

to MICP. In other studies, [81- 84] SEM results showed 

that the concrete mixed with bacteria had improved the 

microstructure which was attributed to calcite 

precipitation by the bacteria. According to 

Iheanyichukwu and Vijay reports [37, 85], the incur-

poration of bacteria into the concrete improved the 

overall microstructure of the concrete. The calcite 

precipitation filled the pores of the concrete reducing 

any ingress of external materials such as sulphates. 

Figure 8 depicts an example of SEM images for 

concrete with and without bacteria solution [37].  
As seen in Figure 8, concrete with bacteria showed 

improved morphology as opposed to plain concrete. 

The authors attributed this behavior to calcite 

precipitation by the bacteria.  

 

 

 
Figure 8. SEM images showing (a) Normal concrete, (b) Bacterial concrete, (c) 5% RHA concrete, and (d) Bacterial concrete with 5% RHA [85].
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4. Conclusion 

This review work has established that cement- based 

materials exposed to sulfate rich-environment are 

prone to chemical and physical sulfate attack. 

Durability of such structures is reduced significantly.  

Further, it was shown that MICP improves the 

mechanical properties of cement-based materials. As 

such, the ingress of sulfate ions in microbial treated 

concrete/ mortar is reduced significantly resulting to 

increased compressive strength. However, it was found 

that there is a need for conducting more research about 

the use of remedial bacteria in environment with 

deleterious bacteria. This includes environment with 

sulfate bacteria such as sewage cases. Many structures 

have failed especially in Kenya in such environments 

where remedial measures have not been taken early in 

advance. Such cases may involve preparation of 

concrete with remedial bacteria. 
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